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ABSTRACT 
 
 

nvestigating the descriptive complexity of sets has been a 
topic of theoretical computer science, particularly general 
recursion theory. In this paper, we investigate the effective 
descriptive complexity of certain sets of real numbers, 
namely, compact sets corresponding to a countable 

collection of closed intervals under the standard euclidian 
topology. We derive the result that the descriptive complexity of 
defining such sets is 𝛱!!, which corresponds to the descriptive 
complexity of well-orderings. To prove such a result, we define 
several functions and relations that could be effectively 
computed by some abstract computing machine with access to 
pre-loaded infinite inputs. 
 
 
INTRODUCTION 
 
In theoretical computer science (Moschovakis 2009), (Chong 
and Yu 2015) and descriptive set theory (Kechris 2012), 
(Hinman 2017), (Yu 2020), descriptive complexity refers to the 
logical complexity involved in defining a set, particularly sets of 
natural numbers or sets of real numbers. Intuitively, a set is more 
complex descriptively if the logical formula that defines it 
requires a longer sequence of alternating universal and 
existential quantifiers (Moschovakis 2010). Descriptive 
complexities of various sets form a well-defined strict hierarchy 
corresponding to the arithmetical and analytical hierarchies. For 
instance, the simplest sets to describe belong to Δ""  - which is the 
lowest rank of the arithmetical hierarchy and corresponds to sets 
of numbers whose membership can be computed using recursive 
functions. Above this rank lie sets belonging to Σ!" , which 
correspond to sets of numbers whose membership can be 
practically computed by some computer (e.g., a Turing 

Machine) - albeit without guarantees of halting (Forster et al. 
2020). More complex than sets belonging to the arithmetical 
hierarchy however are sets that belong to the analytical 
hierarchy, where quantifiers are no longer over mere numbers, 
but over elements of the Baire Space (𝜔#), i.e., functions from 
numbers to numbers representing the reals (Hinman 2017). 
 
The subject of this paper is similar in spirit to that of (Lutzen 
1985) which studied the descriptive complexity of function 
spaces or that of (Matheron 1995) which studied the descriptive 
complexity of Helson Sets. Within the area of mathematics, the 
results of our study would provide insights on the relationships 
between topological spaces or whether such relationships have 
effective mappings. Such questions are analogous to the study 
of functors that map various mathematical spaces as done in 
(Herrlich 1974). Within the area of computer science, 
particularly theoretical computer science, a pioneering work on 
the mathematical foundations of programming language 
semantics is from (Scott 1981), whereby interest in topology and 
computer science (particularly recursion theory) developed 
under the result that “open sets are semidecidable properties” 
(Spreen 1990). In this paper, we investigate the descriptive 
complexity of a specific type of set formed from the real 
numbers. Namely, we investigate sets that are countable and are 
formed from unions of closed intervals of real numbers under 
the euclidian topology, and which are compact, i.e., any open 
covering of these sets have a finite subcovering.  
 
Our result is that the descriptive complexity of such sets belong 
to the Π!! level of the hierarchy. However, to come up with an 
effective description, we first construct a mapping from the 
collection of such sets, to functions in 𝜔#. This is an important 
point to consider given that sets in Π!! are defined effectively 
using some recursive relations with elements belonging to either 
𝜔 or 𝜔#.  
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PRELIMINARIES 
 
Using standard definitions from general topology (Munkres 
2000), given a set 𝑋, a topological space is a structure (𝑋, 𝒯), 
where 𝒯 is a collection of subsets of 𝑋 defined as open sets such 
that 𝒯 is closed under finite intersections and countable unions. 
The collection 𝒯 is a topology for 𝑋. Complements of open sets 
are the closed sets. A basis for 𝒯 is a collection of sets ℬ ⊆ 𝒯 
such that for each 𝑈 ∈ 𝒯, there exists a 𝐵 ∈ ℬ such that 𝐵 ⊆ 𝑈. 
Moreover, given any 𝑈!, 𝑈$ ∈ 𝒯, there exists a 𝐵 ∈ ℬ such that 
𝐵 ∈ 𝑈! ∩ 𝑈$. If there exists a basis ℬ for 𝒯 that is countable, 𝒯 
is termed separable. 
 
If 𝑋 is the set of real numbers, a standard topology over 𝑋 has as 
its basis the collection of all open intervals, i.e., each basis 
element of 𝒯 is an open interval (𝑎, 𝑏) (for some real numbers 
𝑎, 𝑏 ), whereby 𝑥 ∈ (𝑎, 𝑏) ↔ 𝑎 < 𝑥 < 𝑏 . It follows that the 
closed sets in this case are the closed intervals [𝑎, 𝑏] for some 
real numbers 𝑎, 𝑏  such that 𝑥 ∈ [𝑎, 𝑏] ↔ 𝑎 ≤ 𝑥 ≤ 𝑏 . This 
particular topological space with open intervals as basis is also 
known as the euclidian topology given that it is induced by the 
euclidian metric over 𝑋. It can be shown that (𝑋, 𝒯) in this case 
is separable, whose basis consists of all open intervals with 
rational endpoints. 
 
Compactness 
 
Given 𝒪 ⊆ 𝒯 , 𝒪  covers 𝐴 ⊆ 𝑋  if and only if for each 𝑥 ∈ 𝐴, 
there exists an open set 𝑈 ∈ 𝒪  such that 𝑥 ∈ 𝑈 . Given a 
collection of sets 𝒜, we have that 𝒪 covers 𝒜 if and only if 𝒪 
covers ⋃𝒜. In set theory however, for any collection of sets 𝒜, 
the union ⋃𝒜 is also a set, so that the two notions of coverings 
mentioned can be used analogously. Using the notion of 
coverings, the following definition states the notion of 
compactness (Munkres 2000). 
 
Definition 1  Given a topological space (𝑋, 𝒯), a set 𝐴 ⊆ 𝑋 is 
compact if and only if for any 𝒪 ⊆ 𝒯 that covers 𝐴, there exists 
a finite subcover ℱ ⊆ 𝒪 that also covers 𝐴.  
 
Definition 2  Given a topological space (𝑋, 𝒯), a collection of 
sets 𝒜  with elements 𝐴 ⊆ 𝑋 is compact if and only if ⋃𝒜  is 
compact.  
 
Once again, given that in set theory, for any collection of sets 
𝒜, the union ⋃𝒜 is also a set, the two notions of compactness 
above are used analogously throughout the paper. For instance, 
if 𝒪 covers 𝒜, it is understood that each 𝐴 ∈ 𝒜 is covered by 
some ℱ ⊆ 𝒪 such that 𝐴 ⊆	⋃ℱ. 
 
Well Orderings 
 
Let 𝑋 be as set, and let 𝑍 ⊆ 𝑋 × 𝑋. 𝑍 is a well-ordering if and 
only if it is reflexive, antisymmetric, connected, transitive and 
well-founded. In particular, 𝑍 is well-founded if and only if each 
subset of 𝑋 has a least element with respect to 𝑍, i.e., (∀𝑆 ⊆
𝑋)[𝑆 ≠ ∅ → (∃𝑚 ∈ 𝑆)(∀𝑠 ∈ 𝑆)¬(𝑠𝑍𝑚)]. The notion of well-
foundedness could also be expressed as ∀𝜙[∀𝑚(𝜙(𝑚 +
1), 𝜙(𝑚)) ∈ 𝑍 → ∃𝑚(𝜙(𝑚), 𝜙(𝑚 + 1)) ∈ 𝑍]  (where 𝜙  is a 
function in 𝜔#). This definition of well-foundedness however 
requires the Axiom of Dependent Choice (Hinman 2017). 
Throughout the paper, the class of all well-orderings is referred 
to as W. 
 
Recursion Theoretic Concepts 
 
Let elements of 𝜔 be written using small alphabetic letters, i.e., 
𝑛, 𝑘, 𝑙, etc. and let elements of 𝜔# (i.e., functions from 𝜔 to 𝜔) 

be written using greek letters, i.e., 𝛼, 𝛽, etc. For some function 
𝛼 and integer 𝑛 ≥ 0, let 𝛼(𝑛) define the course-of-values of 𝛼 
from 0 up to 𝑛 − 1, i.e., 𝛼(𝑛) = {𝛼(0), 𝛼(1),… , 𝛼(𝑛 − 1)}. 
 
For some 𝑘, 𝑙 ≥ 0, let 𝑅%,'(𝐦,𝜶) define a relation where 𝐦 ∈
𝜔% and 𝜶 ∈ (𝜔#)'. For ease of notation, the superscripts 𝑘, 𝑙 are 
usually omitted from 𝑅 if the values of 𝑘 and 𝑙 are understood. 
By definition, 𝑅%,'  is a relation involving both number inputs 
and function inputs, i.e., elements of 𝜔 and 𝜔#. Inputs in the 
form of functions may not seem to be practical from the 
perspective of a computer given that the amount of time needed 
to feed such an input would be infinite. However, following 
(Hinman 2017), the computer in this case is assumed to be 
connected to some device with infinite memory such that the 
function input is pre-loaded before computation starts. Since 
input loading is not considered in the computation, this allows 
the computer to still perform finite computations despite 
infinitely-sized inputs. 
 
Basic Recursion Theoretic Hierarchies 
 
Following standard definitions on the arithmetical hierarchy, we 
have 𝑅 ∈ Δ""  for the simplest case where 𝑅 is recursive. From 
(Hinman 2017), 𝑅 is recursive if and only if the characteristic 
function for 𝑅 is a recursive functional, i.e., functions belonging 
to the set of primitive recursion functions and closed under both 
bounded and unbounded recursion and functional composition. 
𝑅 ∈ Σ!"  if 𝑅  is semi-recursive, i.e., 𝑅(𝐦,𝜶) ↔ ∃𝑛𝑃(𝑛,𝐦,𝜶) 
for some 𝑃 ∈ Δ"" . Complements of Σ!" are defined as Π!" (i.e., the 
non semi-recursive relations). In general, for any 𝑛 ≥ 0 , we 
have 𝑅(𝐦,𝜶) ∈ Σ(" ↔ ∃𝑛𝑃(𝑛,𝐦,𝜶)  for some 𝑃 ∈ Δ()!"  and 
Π(" as the complement of Σ(". Relations in Δ("  are those in Σ(" ∩
Π(". It is a standard result of recursion theory that for any 𝑛 ≥ 1, 
we have Δ()!" ⊆ Σ(" ∪ Π(". 
 
Above the arithmetical hierarchy lies the analytical hierarchy 
defined using symbols Δ(! , Σ(! , Π(!  for 𝑛 ≥ 0 . A relation 
𝑅(𝐦,𝜶) ∈ Σ!!, just in case 𝑅(𝐦,𝜶) ↔ ∃𝛽∀𝑛𝑃(𝑛,𝐦,𝜶, 𝛽) for 
some arithmetical 𝑃, (i.e., in the analytical hierarchy, instead of 
quantifying over numbers, quantifiers are over functions which 
are elements of 𝜔# ). The complement of Σ!!  is Π!!  so that 
𝑅(𝐦,𝜶) ∈ Π!! ↔ ∀𝛽∃𝑛𝑃(𝑛,𝐦,𝜶, 𝛽) for some arithmetical 𝑃. 
In general, given 𝑛 ≥ 0, we have Π(!  as the complement of Σ(!  
and Δ(!  as relations in Σ(! ∩ Π(! . Similar to the arithmetical 
hierarchy, a standard result in general recursion theory is that for 
any 𝑛 ≥ 1, we have Δ()!! ⊆ Σ(! ∪ Π(! . 
 
A standard result in the analytical hierarchy is quantifier 
contraction (Hinman 2017). That is, any logical formula of the 
form ∀𝛽∃𝑎∀𝑏𝑃(𝛽, 𝑎, 𝑏)  for some 𝑃  could be equivalently 
expressed as ∀𝛽∃𝑧𝑃′(𝛽, 𝑧) for some 𝑃′. Similarly, any logical 
formula of the form ∃𝛽∀𝑎∃𝑏𝑃(𝛽, 𝑎, 𝑏) could be equivalently 
expressed as ∃𝛽∀𝑧𝑃′(𝛽, 𝑧) for some 𝑃′ and 𝑧. 
 
Reductions to Well Orderings 
 
A relation 𝑅 is many-one reducible to a set 𝐴 (i.e., 𝑅 ≪ 𝐴) if and 
only if for some recursive function 𝐹 , we have 𝑅(𝐦,𝜶) ↔
𝐹(𝐦,𝜶) ∈ 𝐴. It follows that if 𝐴 ∈ Σ*! for some 𝑟, and 𝑅 ≪ 𝐴, 
then also 𝑅 ∈ Σ*! . The following is a well-known result in 
general recursion theory, which essentially states that any Π!! 
relation is many-one reducible to some well-ordering. 
 
Theorem 1   For any 𝑅, 𝑅 ∈ 𝛱!! ↔ 𝑅 ≪𝑊.  
 
Proof. See (Hinman 2017). ∎ 
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RESULTS ON SOME COMPACT SPACES 
 
Throughout this section, let 𝑋 be the set of real numbers, and let 
(𝑋, 𝒯) be the euclidian topological space (which is separable). 
As stated previously, elements of 𝒯  are the open sets whose 
basis consists of open intervals (𝑎, 𝑏) for some 𝑎, 𝑏 ∈ ℚ. The 
closed intervals in turn are written as [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ 𝑋. It 
follows that each open (and likewise closed) interval is 
completely determined by its endpoints and there is a one-to-one 
and onto mapping between the set of open (and likewise closed) 
intervals to 𝑋 × 𝑋. Viewing open and closed intervals in terms 
of tuples in 𝑋 × 𝑋  aids in constructing effective procedures. 
Thus, throughout this section, an open / closed interval is 
identified with its endpoints. For instance, if a function 𝑓 has 𝒱 
as input (for some collection of open intervals 𝒱 ), it is 
understood that 𝒱 = {(𝑎", 𝑏"), (𝑎!, 𝑏!), … , (𝑎(, 𝑏()}  for some 
𝑛, and the domain of 𝑓 is identified with 𝑃(𝑋 × 𝑋). 
 
Definition 3  Let 𝒱 be a countable collection of closed intervals 
with rational endpoints and let 𝑉 be the collection of all such 𝒱.  
 
It follows that there is a one-to-one and onto mapping between 
V and 𝑃(ℚ ×ℚ). For the rest of this paper, it is assumed that the 
notation 𝒱  refers to this special type of collection of sets. 
Functions that have 𝒱  as input are assumed to operate on a 
collection of tuples (each of length 2) representing the rational 
endpoints of closed intervals contained in 𝒱. 
 
Mappings from Sets to Functions 
 
The task of this section is to evaluate the descriptive complexity 
of compact 𝒱 ∈ V. However, given that sets belonging to the 
arithmetic and analytical hierarchy have effective descriptions, 
the first step needed is to construct a mapping such that any 𝒱 ∈
V can be described by some function in [0,1]# ⊆ 𝜔# . These 
mappings are 𝑓 and 𝑔 described in Lemmas 1 and 2 below. 
 
Lemma 1  There exists an injective function 𝑓: 𝑉 → {0,1}#.  
 
Proof. Let 𝒱 ∈ V. Let ℎ be any one-to-one and onto mapping 
from the set of rational numbers to 𝜔  (such a mapping exists 
since both the rationals and 𝜔 are countable). Let 𝑝 be a pairing 
function from 𝜔 ×𝜔 to 𝜔. Let 𝒱(𝑛) refer to the 𝑛th element of 
𝒱, i.e., a closed interval [𝑎(, 𝑏(] whose endpoints are 𝑎( and 𝑏( 
(𝒱 can be indexed by 𝑛 since it is countable by definition). Let 
𝒱(𝑛)+ = 𝑎( and 𝒱(𝑛), = 𝑏( . We define 𝑓(𝒱) as follows for 
any 𝑛 ≥ 0 such that 𝒱(𝑛) is defined. 
 

𝑓(𝒱)(𝑝(ℎ(𝒱(𝑛)+), ℎ(𝒱(𝑛),))) = 1 
 
For all other coordinates (say 𝑚) of 𝑓(𝒱) such that 𝑚 does not 
equal the value of 𝑝(ℎ(𝒱(𝑛)+), ℎ(𝒱(𝑛),))  for any 𝑛 , then 
𝑓(𝒱)(𝑚) = 0. ∎ 
 
Lemma 2  Let ℬ be any collection of basis elements, and let 𝐵 
be the collection of all such ℬ. There exists an injective function 
𝑔:𝐵 → [0,1]#.  
 
Proof. As (𝑋, 𝒯) is separable, let 𝐺!, 𝐺$, … be an enumeration of 
all basis elements of 𝒯. Each element of ℬ corresponds to an 
open interval 𝐺( = (𝑎(, 𝑏() for some 𝑛. Thus, we can define 𝑔 
using a similar function as the 𝑓  described in the previous 
Lemma. ∎ 
 
Example 1 For a very simple example of Lemma 1, without loss 
of generality, let 𝒱 ∈ V be a singleton composed of the single 
closed unit interval 𝒱 = {[0,1]}, so that 𝒱(0) = [0,1] and 𝒱(n) 
is undefined for 𝑛 > 0. For the sake of this example, let 𝜔 = ℕ. 
To construct ℎ:ℚ → ℕ , first let 𝑞-: ℚ- → ℤ-  be the Cantor 

bijection from the set of positive rationals to positive integers, 
i.e., 𝑞-(1) =
1, 𝑞-(1 2) = 3, 𝑞-(2) = 2, 𝑞-(3) = 4, 𝑞-(1 3) = 5⁄⁄ , etc. Let 
𝑞:ℚ → ℤ be: 
 

𝑞(𝑥)|
𝑞-(𝑥) if 𝑥 > 0
0	if 𝑥 = 0

−𝑞-(−𝑥) if 𝑥 < 0
 

 
Let 𝑟: ℤ → ℕ  be 𝑟(𝑘) = 2𝑘  if 𝑘 > 0  and 𝑟(𝑘) = −2𝑘 + 1  if 
𝑘 ≤ 0.  Given 𝑞 and 𝑟 define ℎ as ℎ ≔ 𝑟 ∘ 𝑞. Let 𝑝:ℕ × ℕ → ℕ 
be the usual Cantor pairing function, i.e., 
 

𝑝(𝑛,𝑚) =
1
2
(𝑛 +𝑚 − 2)(𝑛 +𝑚 − 1) +𝑚 

 
Using the definition for 𝑓 in Lemma 1, we have 𝑓({[0,1]}) as an 
infinite sequence of zeros and ones such that 𝑓({[0,1]})(3) = 1 
(since we have 𝑛 = ℎ(0) = 𝑟�𝑞(0)� = 1  and 𝑚 = ℎ(1) =
𝑟�𝑞(1)� = 2 in the definition of 𝑝 above). All other coordinates 
of 𝑓({[0,1]})  are zero. If instead we have 𝒱 = {[0,1], [2,3]} 
then 𝒱(0) = [0,1] , 𝒱(1) = [2,3] , and 𝒱(n)  is undefined for 
𝑛 > 1 . It follows that 𝑓({[0,1], [2,3]})(3) = 1  and 
𝑓({[0,1], [2,3]})(63) = 1  (since for 𝒱(1) = [2,3] , we have 
𝑛 = ℎ(2) = 𝑟�𝑞(2)� = 4 and 𝑚 = ℎ(3) = 𝑟�𝑞(3)� = 8 in the 
definition of 𝑝  above). The same analogously holds for 𝑔 , 
except that instead of closed intervals, ℬ  is a set of basis 
elements. 
 
Definition 4  Let 𝑓 and 𝑔 be the functions described in Lemmas 
1 and 2 respectively. Given 𝒱 ∈ 𝑉  and ℬ ∈ 𝐵 , let 𝛼 = 𝑓(𝒱) 
and 𝛽 = 𝑔(ℬ). Given 𝑛, the set that corresponds to 𝛼(𝑛) is:  

 
{𝑓)!(𝛼(𝑖")), 𝑓)!(𝛼(𝑖!)), … , 𝑓)!(𝛼(𝑖%))} 

 
for some 𝑘  with 0 ≤ 𝑘 ≤ 𝑛 − 1  such that for 0 ≤ 𝑗 ≤ 𝑘 , we 
have 𝛼(𝑖.) = 1. It follows that each 𝑓)!(𝛼(𝑖)) for some 𝑖 is a 
closed interval contained in 𝒱. Similarly, given 𝑚, the set that 
corresponds to 𝛽(𝑚) is:  

 
{𝑔)!(𝛽(𝑖")), 𝑔)!(𝛽(𝑖!)), … , 𝑔)!(𝛽(𝑖'))} 

 
for some 𝑙 with 0 ≤ 𝑙 ≤ 𝑚 − 1 such that for 0 ≤ 𝑗 ≤ 𝑙, we have 
𝛽(𝑖.) = 1. It follows that each 𝑔)!(𝛽(𝑖)) corresponds to a basis 
element contained in ℬ.  
 
Example 2 Let 𝑓 be the same 𝑓 constructed in Example 1. Once 
again, suppose that 𝒱 = {[0,1]}. From Example 1, we have 𝛼 =
𝑓(𝒱) as as an infinite sequence of zeros and ones such that 
𝛼(3) = 1 and zero in all other coordinates. Suppose 𝑛 = 4. It 
follows that the set that corresponds to  𝛼(4) is simply {[0,1]}. 
If 𝒱 = {[0,1], [2,3]}, then 𝛼(3) = 1 and 𝛼(63) = 1, and 𝛼  is 
zero in all other coordinates. In this case, the set that corresponds 
to  𝛼(4) is {[0,1]} as before. But the set that corresponds to say,  
𝛼(100) is {[0,1], [2,3]}. The same analogously holds for 𝑔. 
 
Effective Computation of Coverings 
 
Having defined the mappings 𝑓 and 𝑔 in Lemmas, the next step 
is to define a recursive relation that would form part of the 
logical statement expressing the descriptive complexity of 
compact 𝒱. This recursive relation is 𝑃 described in Lemma 3. 
Throughout this section, both ℬ and B are the same ℬ and B as 
in Lemma 2. 
 
Lemma 3  Given any 𝒱 ∈ 𝑉 and ℬ ∈ 𝐵, let 𝛼 = 𝑓(𝒱) and 𝛽 =
𝑔(ℬ) . There exists a recursive relation 𝑃  such that 
𝑃(𝑛,𝑚, 𝛼, 𝛽)  if and only if the collection of basis elements 
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corresponding to 𝛽(𝑚) covers the union of at most 𝑛  closed 
intervals of 𝒱, corresponding to 𝛼(𝑛).  
 
Proof. Let 𝑓 and 𝑔 be the functions described in Lemma 1 and 2 
respectively. Fix 𝑛  and 𝑚 . Define the recursive function 
𝑔:𝜔# ×𝜔 → [0,1]/#  such that 𝑔(𝛽,𝑚) = 𝛽(𝑚) . Similarly, 
define the recursive function 𝑓:𝜔# ×𝜔 → [0,1]/#  such that 
given 𝒱 ∈ V  and 𝑛 , we have 𝑓(𝛼, 𝑛) = 𝛼(𝑛) . The sequence 
𝛽(𝑚) (and analogously, 𝛼(𝑛)) is a finite sequence of 0’s and 
1’s of length 𝑚 such that for 0 ≤ 𝑖 < 𝑚, we have 𝛽(𝑚)(𝑖) = 1 
if and only if for some 𝑘, there is a basis element (𝑎% , 𝑏%) ∈ ℬ 
such that 𝑔(ℬ)(𝑘) = 𝑝(ℎ(ℬ(𝑘)+, ℬ(𝑘),)) = 𝑖 . Similarly, for 
0 ≤ 𝑗 < 𝑛 we have 𝛼(𝑛)(𝑗) = 1 if and only if for some 𝑙, there 
is a closed interval [𝑎' , 𝑏'] ∈ 𝒱  such that 𝑓(𝒱)(𝑙) =
𝑝(ℎ(𝒱(𝑙)+, 𝒱(𝑙),)) = 𝑗 . Let 𝑐  be the total number of 
coordinates of 𝛼(𝑛) with value 1, and let 𝑑 be the total number 
of coordinates of 𝛽(𝑚) with value 1. Let 𝐶", 𝐶!, . . . , 𝐶0  be the 
corresponding closed intervals for 𝛼(𝑛)  (i.e., the closed 
intervals mapped to coordinates of 𝛼(𝑛)  with value 1  as 
described above). Similarly, let 𝐵", 𝐵!, . . . , 𝐵1  be the 
corresponding basis elements for 𝛽(𝑚). To effectively compute 
𝑃  given parameters 𝑛 ,𝑚 ,𝛼 , and 𝛽 , first compute 𝛼(𝑛) =
𝑓(𝛼, 𝑛)  and 𝛽(𝑚) = 𝑔(𝛽,𝑚) . Both 𝛼(𝑛)  and 𝛽(𝑚)  are 
recursively computed. Afterwards, check each 𝐶.  for 0 ≤ 𝑗 ≤
𝑐 < 𝑛 if it is covered by any of the 𝐵' for 0 ≤ 𝑙 ≤ 𝑑 < 𝑚. This 
is a recursive computation given that it involves making 
comparisons among endpoints, i.e., [𝑎, 𝑏] is covered by (𝑐, 𝑑) if 
and only if 𝑐 < 𝑎 and 𝑏 < 𝑑. If all 𝐶.’s are covered by at least 
one 𝐵', then the collection of basis elements corresponding to 
𝛽(𝑚) covers the union of at most 𝑛 closed intervals of 𝒱. This 
is a recursive computation given that all computations are 
recursive and the number of times they are performed is finite - 
being bounded by parameters 𝑐 < 𝑛  and 𝑑 < 𝑚 . By 
construction of 𝑃, the biconditional implication of the Lemma is 
proven. ∎ 
 
Example 3 Continuing Examples 1 and 2, let 𝑓: 𝑉 → {0,1}# be 
the same as Example 1, and let 𝑔:𝐵 → [0,1]#  be the natural 
modification of 𝑓 to a domain that is the collection of sets of 
basis elements. Once again, suppose that 𝒱 = {[0,1]}  is the 
singleton set composed of the unit interval. Suppose that ℬ ∈ 𝐵 
is the set of basis elements of the form (−1 2⁄ , 1/2 + 𝑛)	for 
integers 𝑛 ≥ 0. As shown in Example 2, we have 𝛼(3) = 1 and 
by a similar computation, we have for instance, 𝛽(72) = 1  
(since for the basis element (−1 2⁄ , 1 2⁄ ) we have ℎ(−1 2⁄ ) =
𝑟�𝑞(−1 2⁄ )� = 7 and ℎ(1 2⁄ ) = 𝑟�𝑞(1 2⁄ )� = 6) and 𝛽(𝑥) =
0 for all 𝑥 < 72. Of course, an infinite number of coordinates of 
𝛽 are 1 since it is an infinite set of basis elements. Suppose that 
𝑛 = 1 and 𝑚 = 1. It follows that 𝛼(1) and 𝛽(1) are both empty 
so that 𝑃(1,1, 𝛼, 𝛽)  holds vacuously. However, if 𝑛 = 4  and 
𝑚 = 3, then 𝑃(4,3, 𝛼, 𝛽) is false since the set corresponding to 
𝛼(1)  is set {[0,1]}  as shown in Example 2 (i.e., 𝐶" = [0,1] 
according to the notation of the proof for Lemma 3), whereas the 
set corresponding to 𝛽(3) is empty. Likewise, 𝑃(4,73, 𝛼, 𝛽) is 
false since 𝐶" = [0,1]  but 𝐵" = (−1 2⁄ , 1 2⁄ )  and 
(−1 2⁄ , 1 2⁄ )  does not cover [0,1] . But for 𝑛 = 4  and 𝑚 =
205 , 𝑃(3,205, 𝛼, 𝛽)  holds - since for the basis element 
(−1 2⁄ , 3 2⁄ )  we have ℎ(−1 2⁄ ) = 𝑟�𝑞(−1 2⁄ )� = 7  and 
ℎ(3 2⁄ ) = 𝑟�𝑞(3 2⁄ )� = 14  so that 𝛽(204) = 1  and 𝛽(205) 
corresponds to the set {(−1 2⁄ , 1 2⁄ ), (−1 2⁄ , 3 2⁄ )}  which 
covers [0,1]. 
 
Descriptive Complexity Results 
 
This section lays down the stated result of the paper, which is 

that the complexity of evaluating whether a set 𝒱 is compact is 
not harder than defining a set in the Π!! level of the analytical 
hierarchy. However, defining the descriptive complexity of a set 
involves the use of recursive relations whose elements belong to 
either 𝜔 or 𝜔# . To simplify the analysis, we assume that all 
elements of the recursive relations are values of the functions 𝑓 
and 𝑔 described in Lemmas 1 and 2. Computation of 𝑓 and 𝑔 
are not factored in the evaluation of complexity as they are 
infinite in nature. Rather, it is assumed that given 𝒱 , 
computation of 𝛼 = 𝑓(𝒱) is done beforehand and 𝛼 is loaded 
into the infinite memory of the computer before it starts 
computation. The same holds true for ℬ and 𝑔, i.e., 𝛽 = 𝑔(ℬ) is 
loaded into the infinite memory of the computer prior to any 
computation by the computer. Having described informally the 
abstract computational model, we now state the main theorem 
and corollaries of this paper. 
 
Theorem 2  Given any 𝒱 ∈ 𝑉 , let 𝛼 = 𝑓(𝒱). There exists a 
relation 𝑅",! ∈ 𝛱!!  such that any covering of 𝒱  by basis 
elements of 𝒯 has a finite subcover if and only if 𝑅",!(𝛼).  
 
Proof. Let 𝑅",!  be 𝑅  for ease of notation and let 𝑃  be the 
recursive relation described in Lemma 3. We first define 𝑅′ as: 
  

𝑅′(𝛼) ↔ ∀𝛽∃𝑚∀𝑛∀𝑘[𝑃(𝑛, 𝑘, 𝛼, 𝛽) → 𝑃(𝑛,𝑚, 𝛼, 𝛽)] 
  (1) 

 
Let 𝑓  and 𝑔  be the functions described in Lemma 1 and 2 
respectively. Let ℬ be any collection of basis elements of 𝒯 , 
with 𝛽 = 𝑔(ℬ). Suppose first that ℬ does not form a covering 
of 𝒱. By Lemma 3, it follows that for all 𝑛 and 𝑘, 𝑃(𝑛,𝑚, 𝛼, 𝛽) 
is false and the matrix in the right hand side of Eq. 1 holds true 
vacuously. So suppose that ℬ  forms a covering of 𝒱 . By 
assumption, there exists a finite collection of basis elements ℱ ⊆
ℬ that forms a covering of 𝒱. Since |ℱ| is finite, we have ℱ ⊆
𝒢  for some finite 𝒢  such that for some 𝑚 , 𝒢  corresponds to 
𝛽(𝑚) . It follows that 𝒢  is likewise a finite covering for 𝒱 
consisting of basis elements. Since 𝒢 is a finite covering of 𝒱, it 
follows that for any 𝑛 , we have 𝑃(𝑛,𝑚, 𝛼, 𝛽)  - as the finite 
collection of basis elements 𝒢 that corresponds to 𝛽(𝑚) covers 
the union of closed intervals corresponding to 𝛼(𝑛) for any 𝑛 ≥
0. Therefore 𝑅′(𝛼). 
 
Let 𝜓 be a pairing function 𝜓:𝜔 × 𝜔 → 𝜔. Define 𝛾:𝜔 × 𝜔 ×
𝜔 → 𝜔 to be the function 𝛾(𝑎, 𝑏, 𝑐):= 𝜓(𝑎, 𝜓(𝑏, 𝑐)). Given any 
tuple 𝑥 = (𝑎, 𝑏), let (𝑥)" = 𝑎  and (𝑥)! = 𝑏 . Similarly, given 
𝑥 = (𝑎, 𝑏, 𝑐), let (𝑥)" = 𝑎 , (𝑥)! = 𝑏  and (𝑥)$ = 𝑐 . Applying 
the stated result on quantifier contraction and basic results on 
logic, we have the following set of equivalences from which we 
conclude that 𝑅(𝛼) ∈ Π!!.  
 
𝑅′(𝛼) ↔ ∀𝛽∃𝑚∀𝑛∀𝑘[𝑃(𝑛, 𝑘, 𝛼, 𝛽) → 𝑃(𝑛,𝑚, 𝛼, 𝛽)] 
↔ ∀𝛽∃𝑚∀𝑧[𝑃((𝜓)!(𝑧))", (𝜓)!(𝑧))!, 𝛼, 𝛽) → 𝑃((𝜓)!(𝑧))", 𝑚, 𝛼, 𝛽)] 
↔ ∀𝛽∃𝑧[𝑃((𝛾)!(𝑧))!, (𝛾)!(𝑧))$, 𝛼, 𝛽) → 
𝑃((𝛾)!(𝑧))!, (𝛾)!(𝑧))", 𝛼, 𝛽)] 
 
Let 𝛼 = 𝑓(𝒱) and let 𝛽 = 𝑔(ℬ) for some collection of basis 
elements ℬ. Let 𝑅′(𝛼) be defined as in Eq 1. By the result on 
quantifier contraction, 𝑅′ is equivalent to some 𝑅 ∈ Π!! with the 
rightmost universal quantifier (over numbers) removed. By 
assumption, we have 𝑅(𝛼) and therefore 𝑅′(𝛼). By definition of 
𝑅′, we have that there exists an 𝑚 such that for all 𝑛 and 𝑘, 
𝑃(𝑛, 𝑘, 𝛼, 𝛽) → 𝑃(𝑛,𝑚, 𝛼, 𝛽)  is true. If given 𝑛  and 𝑘 , 
𝑃(𝑛, 𝑘, 𝛼, 𝛽)  is false, then the collection of basis elements 
corresponding to 𝛽(𝑘) does not form a covering of 𝒱 so that the 
proof holds vacuously. If given 𝑛 and 𝑘, 𝑃(𝑛, 𝑘, 𝛼, 𝛽) is true, by 
Lemma 3, the finite set of basis elements corresponding to 𝛽(𝑘) 
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forms a covering of the union of closed intervals corresponding 
to 𝛼(𝑛). But since 𝑅′ is true, for all 𝛽, there exists an 𝑚 such 
that the finite set of basis elements corresponding to 𝛽(𝑚) also 
forms a covering of the union of closed intervals corresponding 
to 𝛼(𝑛), i.e., 𝑃(𝑛,𝑚, 𝛼, 𝛽) is true (following Lemma 3). As this 
𝑚 holds for all 𝑛 and 𝑘 , we have that the finite set of basis 
elements corresponding to 𝛽(𝑚)  is the desired finite 
subcovering consisting of basis elements. ∎ 
 
Theorem 3  There exists a relation 𝑅",! ∈ 𝛱!! such that for any 
𝒱 ∈ 𝑉 with 𝛼 = 𝑓(𝒱), we have:  
  

𝒱	is	compact ↔ 𝑅",!(𝛼) 
 
Proof. Let 𝑅",! be 𝑅 for ease of notation. Define 𝑅(𝛼) such that 
𝑅(𝛼) ↔ 𝑅′(𝛼), where 𝑅′(𝛼) ∈ Π!! is described in Theorem 2. 
Thus, 𝑅(𝛼) ∈ Π!! . To prove the (←) direction, suppose 𝑅(𝛼) 
and therefore 𝑅′(𝛼). By Theorem 2, it follows that for each 
covering of 𝒱 by a collection of basis elements, there exists an 
𝑚 such that 𝛽(𝑚) forms a finite subcollection of basis elements 
that also covers 𝒱. To show that 𝒱 is compact, by a standard 
result of general topology regarding basis, any collection 𝒪 of 
open sets is mapped to a corresponding collection ℬ of basis 
elements such that for all 𝑂 ∈ 𝒪 and all 𝑥 ∈ 𝑂, there exists a 
𝐵 ∈ ℬ  such that 𝑥 ∈ 𝐵  (call this the equivalence conditions 
between 𝒪 and ℬ). Using contraposition, suppose that 𝒱 is not 
compact, then there exists a covering 𝒪  such that no finite 
subcovering of 𝒪 covers 𝒱. Let ℬ be the set of basis elements 
satisfying the equivalence conditions with 𝒪, plus the additional 
condition that each 𝐵 ∈ ℬ is mapped to a corresponding 𝑂 ∈ 𝒪 
such that 𝐵 ⊆ 𝑂 . By definition of basis, such a ℬ  exists. It 
follows that for 𝛽 = 𝑔(ℬ) (using the function 𝑔  described in 
Lemma 2), there does not exist an 𝑚  whereby 𝑃(𝑛,𝑚, 𝛼, 𝛽) 
holds for any 𝑛. This implies ¬𝑅′(𝛼) and therefore ¬𝑅(𝛼). 
 
Alternatively, for a direct proof, suppose that for each cover of 
𝒱 by basis elements, there exists a finite subcover consisting 
also of basis elements. We show that 𝒱 is compact. Let 𝒪 be any 
covering of 𝒱, and let ℬ be the collection of basis elements that 
satisfy the equivalance conditions with 𝒪, plus the additional 
condition that for each 𝑂 ∈ 𝒪, there exists a 𝐵 ∈ ℬ such that 
𝐵 ⊆ 𝑂. It is possible to derive such a collection ℬ by definition 
of a basis. Given that ⋃𝒪 = ⋃ℬ , it follows that ℬ  forms a 
covering of 𝒱. Since 𝑅′(𝛼 = 𝑓(ℬ)) is true, by Theorem 2, there 
exists a finite subcollection ℱ ⊆ ℬ that also covers 𝒱, such that 
given 𝛽 = 𝑔(ℬ), we have that ℱ corresponds to 𝛽(𝑚) for some 
𝑚. Let ℱ = {𝐵", 𝐵!, … , 𝐵1} for some 𝑑 < 𝑚. Given that for 0 ≤
𝑖 ≤ 𝑑 , we have 𝐵2 ⊆ 𝑂2  for some 𝑂2 ∈ 𝒪 , we can form the 
desired finite collection of open sets {𝑂", 𝑂!, … , 𝑂1} ⊆ 𝒪 which 
also covers 𝒱. Since this holds true for any covering 𝒪 of 𝒱, 𝒱 
is therefore compact. 
 
To prove the (→) direction, suppose that 𝒱 is compact. Since 𝒱 
is compact, any covering 𝑂 of 𝒱 has a finite subcollection ℱ ⊆
𝒪 that also covers 𝒱. Let ℬ be a covering for 𝒱 consisting of a 
collection of basis elements. Since 𝒱  is compact and ℬ  is a 
covering, there exists finite subcollection ℱ ⊆ ℬ that covers 𝒱. 
It follows that ℱ ⊆ 𝒢 for some finite subcollection 𝒢, such that 
given 𝛽 = 𝑔(ℬ), 𝒢 corresponds to 𝛽(𝑚) for some 𝑚. Since this 
holds true for any collection ℬ of basis elements that covers 𝒱, 
it follows that for any 𝛽 = 𝑔(ℬ), there exists a finite subcover 
𝒢 ⊆ ℬ that corresponds to 𝛽(𝑚) for some 𝑚 - such that for all 
𝑛, 𝑃(𝑛,𝑚, 𝛼, 𝛽) holds true. Therefore 𝑅′(𝛼) and equivalently, 
𝑅(𝛼). ∎ 
 
Corollary 1 Given any 𝒱 ∈ 𝑉 , let 𝛼 = 𝑓(𝒱) . Let 𝑅  be the 
relation described in Theorem 3. Then 𝑅 ≪ 𝑊.  
 

Proof. Follows readily from Theorems 1 and 3. ∎ 
 
Corollary 2 Let 𝒱 ∈ 𝑉 be compact, and let ℎ be any continuous 
function ℎ: 𝑃(𝑋) → 𝑃(𝑋) . Let 𝛼 = 𝑓(ℎ(𝒱)) . Let 𝑅  be the 
relation described in Theorem 3. Then 𝑅(𝛼).  
 
Proof. Given that 𝒱  is compact and countable, we have that 
ℎ(𝒱) is also compact - using the result that continuous images 
of compact spaces are also compact. By the Heine-Borel 
theorem, compact spaces of 𝑋 are closed and bounded (Munkres 
2000). It follows that ℎ(𝒱) is likewise closed and bounded, i.e., 
made up of a countable collection of closed intervals (a point is 
also considered a closed interval and functions map countable 
sets to countable sets). Thus, given 𝛼 = 𝑓(ℎ(𝒱)), by Theorem 
3, 𝑅(𝛼). ∎ 
 
 
CONCLUSION AND RECOMMENDATIONS 
 
In this paper, we showed that the descriptive complexity of a 
compact countable collection of sets that are formed from unions 
of closed intervals of real numbers belongs to Π!!. To prove this 
result, we defined a recursive 𝑅 such that for any function 𝛼 that 
corresponds to the special types of collection of sets just 
described, we have that the collection is compact if and only if 
𝑅(𝛼) holds. 
 
A natural extension of this paper is to inquire whether given the 
𝑅 described in Theorem 3, there is a mapping W≪ 𝑅. If this is 
true, it follows that the descriptive complexity of evaluating a 
set in Π!! is akin to evaluating the compactness of a collection of 
sets belonging to V . It is to be noted that this paper only 
considers compactness of collections of sets belonging to V. 
However the topological space in which V is found is metrizable 
and as such, satisfies nice properties such as separability which 
facilitates analysis of its descriptive complexity. A natural 
extension is to consider if it is viable to evaluate the descriptive 
complexities of more arbitrary collections of sets under weaker 
topological spaces, i.e., spaces that are not metrizable or spaces 
that follow weaker Axioms such as the T1 Axiom whereby for 
any two distinct points, each point has a neighborhood that does 
not contain the other point. Possible lack of separability in these 
spaces along with the arbitrary cardinality of its collection of 
basis elements may not guarantee that the collection of compact 
sets in every instance of these spaces has an effective 
description. 
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